
Matlab/Simulink functional tests with STB/AGATHA tool
J.Y. Pierron1, A. Lapitre1, J.P. Gallois1, S. Devulder2, T. Gueguen2, P. Le Corre3

1: CEA, LIST, Boîte Courrier 94, Gif-sur-Yvette, F-91191 France
2: GEENSOFT, 120 Rue René Descartes, 29280 PLOUZANE

3: Johnson Controls, 10 av de l’Entreprise, BP 78587, 95892 Cergy Pontoise

Abstract: This paper first presents an overview of
one work done in the EDONA project which
proposes an open development platform to
automotive standards. EDONA is a project of the
System@tic cluster Paris-Area.

Then, the paper will in more presents details the
results of an assessment of a test engineering
workflow combining the AGATHA tool from CEA
LIST and the STB tool from Geensoft. STB is
connected to Matlab/Simulink platform used as
modeller and test execution engine. This platform is
used by Johnson-Controls in association with their
AUTOSAR strategy.

Keywords: Matlab/Simulink specification, symbolic
execution, test case generation

1. Introduction

Our test cases generation tool, integrated in the
software development process, will help designer to
improve the quality and robustness of their designed
models for software development cost and time
reduction.

Once developed, the designer can realize a V cycle
on the model. The tool allows one to obtain structural
and functional test coverage.

Users of the resulting tool box can work step by step
for model testing by selecting coverage criteria then
directly visualizing tests impact. These tests can be
exported in Excel for reuse in other environments.
For instance, in order to manage non regression
tests or multiple automatic test sequences execution.

The generation of tests is based on symbolic
automaton execution techniques and on constraint
solving. The tool generates numerical test cases by
building exhaustive execution trees from automata
based specifications.

The use of criteria combined with symbolic execution
techniques allows one to reduce the combinatorial
explosion when generating test cases and then to
build a set of exhaustive tests according the chosen
criteria. The paper concludes on the quality and

robustness for complex system improvements
achievable with such a tests generation process.

This paper is divided into 6 sections:

Section 2 of the paper introduces an overview of the
industrial (Johnson Controls Automotive Experience,
named as Johnson Controls from now) expectations.

Section 3 presents the STB tool from Geensoft that
interacts between designer, model and test cases
generator (AGATHA).

Section 4 introduces AGATHA, background
technology.

Section 5 and 6 focused on use cases to validate
concepts on Johnson Controls examples and
feedback of today results.

Section 7 is a conclusion.

2. Industrial needs overview

Electronics Control Unit (ECU) development, in
Automotive, as in other domains, shall be performed
in less and less time to follow rapid market
evolutions. In addition costs should be reduced to
increase competitiveness while maintaining the
highest level of quality. These requirements have a
strong impact on software development, which is a
main activity in ECU development.

With the introduction of the Autosar® architecture,
Johnson Controls is positioned as integrator and
focuses on knowledge located on the application
level. For many companies like Johnson Controls,
application implementations go through modeling
with tools like Matlab®/Simulink®/Stateflow® for
earliest design verification and automatic C-Code
generation.

As an example, we develop models used in Battery
Management Systems (battery algorithm), Body
Controller Modules (Tire Pressure Monitoring
System, Autolearning) or Instrument Clusters (Fuel
Tank Algorithm).

 Page 1/7

In generic software development, an impact analysis
based on the software V-Model, shows that the
majority of software defects are generated in
analysis and design phases and are detected in
coding/unitary tests and operational life (see Table 1
taken from [7]).

Software cycle

step
Errors

produced (%)
Errors

detected (%)
Analysis 55 18
Design 30 10
Coding and
unitary tests

10 50

Operational life 5 22

Table 1 : Table of defects produced and detected
vs. the software life cycle step

Other studies (Figure 1) provide an idea of the
relative cost impact in relation with the defect
detection in this V-Model [8].

Figure 1 : Cost for correction related to the

detection process

To support designers to improve the model design
and robustness, Johnson Controls is associated to
partners, in the EDONA project, for the development
of a generic tool for automatic test cases generation
at the model level. This tool shall be able to interact
with a standard environment for automatic validation
and link to home-made tools. We will be able to
generate test cases to verify back to back tests
between model and code, up to system validation
(when possible).

Once the model is developed and simulated, the
designer performs the tests of the model. The tool
takes on some structural test coverage such as dead
lock detection, data overflow, unused algorithm part,

Model Coverage/Decision Coverage or signal
ranges.

In addition to functional validation, this tool
associated to other market tool for model
management shall enable us to improve analysis for
model coverage (MIL) and code coverage (SIL). We
will be able to detect dead code or deactivated code,
analyse functions and calls coverage and to reduce
time before obtaining the first results.

This fills some requirements of ISO26262 standard
[4] (see examples provided previously) to be able to
reach up to the safety ASIL D level.

3. Safety Test Builder

Safety Test Builder (STB) is a Geensoft’s tool
dedicated to automating the production of test cases
for embedded software projects that have been
modelled with Simulink® and/or Stateflow® from The
MathWorks®. The tool, which is fully integrated with
the Matlab environment, works with any standard
Matlab blockset and provides easy extension using
an “external tool” feature.

Test cases generated by STB are defined according
to coverage objectives derived from user-defined
criteria. Typical coverage criteria are:

• Functional coverage, where only the
functions of the model are covered (i.e. the
inputs/outputs, global MC/DC, etc). This is a
kind of black-box strategy.

• Structural coverage, in which the test
objectives are selected to exercise some or
all of the model internal blocks. This is a
typical white box strategy.

Once test cases are found, STB is able to export and
optimize them either in number or size, to call the
Simulink’s coverage tool to produce a coverage
report, generate a Simulink test harness that can

 Page 2/7

check the model (or any implementation of it) against
the expected inputs/outputs and to replay a specific
test case step-by-step in order to find out why a
model diverges from the expected behavior, etc.

This list is actually open: by using the external tool
feature, one can freely add new functions to STB.
For instance in EDONA/WP3 we have developed a
tool that exports the test case database into spread-
sheets used by Johnson Controls’ tool chain (see
section 5).

In order to find test cases, the model is automatically
instrumented with extra Simulink blocks that detect
when an objective is covered. Then STB uses
Simulink’s native simulation modes (normal,
accelerated or rtw-generated c-code) to execute
heuristically-driven random walks in the model’s
state space. This approach allows STB to cope with
any standard block present in the model without
worrying about the numerous parameters that can
alter its semantics. Indeed, the scenarios found by
STB accurately represent by construction the exact
behavior of the model.

The speed of the heuristically-driven random search
is rather good (half hundred thousand steps per
second on a typical application like the ones of
section 5). Therefore, in a few-seconds search,
many millions steps are examined. This brute-force
approach allows covering most test objectives very
quickly (>80% coverage ratio is usually observed on
industrial models). Obviously, hard-to find corner
cases require longer search time.

Plotting a typical coverage ratio against the time-
spent (see Figure 2) shows that it asymptotically
converges to a limit. This means that if covering the
first 80% of the test objectives is fairly easy, the

remaining 20% will require much more effort (not
counting for unreachable objectives).

Figure 2: Coverage ratio in function of the time
spent for random search

This stated, it appeared that in order to improve STB
performance, a different technique should be used.
Hence, in EDONA/WP3, an external tool has been
developed, that uses the AGATHA engine by the
CEA LIST (see section 4) in order to perform
symbolic execution of the model, to reach corner
cases and possibly prove which test objective is
reachable or not.

As the AGATHA tool is not able to natively
understand Simulink models, we had to find a way to
translate Simulink’s semantics into the proper
representation.

The formal semantic of Simulink models is hard to
define because it is an industrial standard that
contains many variants. It also slightly evolves with
Matlab’s versions and is not publically available.
However, when using the embedded coder of Real-
Time Workshop, one gets C code that is
semantically correct with respect to the model. Since
the semantic of embedded C is rather clean, we
have designed a technology that is able to transform
(a subset of) C into AGATHA-compliant automata.

This works in several steps. First the C code is read
and an abstract syntax tree is constructed. That tree
is then formally transformed in an internal form that
represents an automaton, the states of which are the
condition points present in the C code and the
guarded out-transitions contain the decision

 Page 3/7

executed according to the condition. For instance,
the following C code:

if(cond1) {code1…;}
switch(var) {
 case val1: code2…; break;
 case val2: code3…;
 case val3: code4…; break;
}

is translated into the following states and guarded
transitions:

s1
s2 s3

[cond1] code1…

[!cond1]

[var==val1] code2…

[var==val2] code3…; code4…

[var==val3] code4…

[var!=val1 && var!=val2 && var!=val3]

The C variables read and written in transitions
coming out of different states are transformed into
global state variables. Others are represented as
transition specific local variables. Nested conditions
(e.g. If() statements) simply add extra states in a
way that prevents the explosion of the number of
states. Globally the size of the produced automaton
grows almost linearly with the size of the C code.

Actually the defined technology is flexible enough to
work on C code generated by other C-code
generators such as Geneauto2 [6].

Overall the formal tool-chain added to STB works as
follows:

1. Instrument the model using extra Simulink
blocks, as usually done by STB.

2. Call a C generator (ERT coder or
Geneauto2).

3. Read the C code with the proper reader (one
for ERT, one for Geneauto2) and build an
internal representation of the C code that is
not generator dependent.

4. Translate that internal representation and all
objectives into AGATHA’s format.

5. Launch the AGATHA tool.
6. Read the scenarios that have been found by

AGATHA and inject them into STB’s
database.

Using this tool-chain, we are now able to
symbolically execute the Simulink model looking for
corner cases not found with STB native algorithm
and export them into Johnson Controls’ format, in
order to perform hardware-in-the-loop simulations.

4. Test generation with AGATHA

The goal of the AGATHA tool-set is to help
engineers to check if a model based on concurrent
automata fits the user informal requirements. The
idea is to symbolically execute ([1], [5]) the model in
order to obtain a synoptic view of its behaviours.

4.1. Symbolic Execution

AGATHA derives a tree-like structure denoting all
behaviours of the model. The tree nodes are
snapshots which represent the symbolic states of the
system during the execution at a given step. Here, a
snapshot is a data structure named Execution
Context () which includes: Figure 3

• a Control State,
• a Path Condition, conjunction of the

encountered guard to reach this context,
• all symbolic variables values,

CS : s
PC : x1 > y0
x = 2 * x1
y = y0 + x1

EC =

Figure 3: Execution Context

Let t be a transition like in Figure 4 which the source
state s is include in the control state of EC.

Symbolic evaluation of t provides two new execution
contexts described by the which
corresponds of the two behaviours been inferred
from a classical if-then-else statement.

Figure 5

s

t

s’

If x > 0
Then x = 2 * y + x
Else y = x - y

Figure 4: Transition

 Page 4/7

4.2. AGATHA workflow

In order to check the model according to the user
objectives or connected tools like STB, AGATHA
offers a set of execution (or behaviour) filters which
can be configured to do structural or functional
coverage among others. For example, the formula
checker (verifier) filter needs a set of algebraic
formula provided by the user.

The Figure 6 shows the AGATHA workflow perform
behaviours selection according to user configuration
(for filters) during an evaluation step. Three main
agents sequentially work:

1. A Queue is used to store the waiting
execution contexts. A Selector deals with the
model search strategy like depth first,
breadth first or random.

2. A Symbolic Execution engine.
3. A Controller manages filters.

EC EC Symbolic
Execution

EC

EC1 EC2

Controller
EC

EC EC

EC EC EC EC

EC1 EC2

Execution Tree

Queue

EC1EC2

Formula
Checker

Other
Checker

Selector

Figure 6: AGATHA workfow

4.3. Test generation

From the symbolic execution tree generated by
AGATHA, we consider each behaviour path as a
symbolic test case which represents an equivalence
class of numerical tests. A constraint solver is used

to numerize each symbolic path which is a sequence
of execution contexts. A test case contains one
sequence of system cycles. Each cycle is made of
values for all input / output system parameters.

CS : s’
PC : x1 > 0 ⋀ x1 > y0

x = 2 * y0 + 4 * x1
y = y0 + x1

EC1 =

5. Use cases description CS : s’
PC : x1 ≤ 0 ⋀ x1 > y0 EC2 = 5.1. Overview of models perimeter used
x = 2 * x1
y = 3 * x1 - y0

Figure 5: Symbolic Execution
To check the validity of concept, the perimeter taken
into account is the product for battery management
systems and body controller modules. More
precisely some algorithms developed for the
Johnson Controls Autosar prototype, the Tire
Pressure Monitoring System (TPMS) and battery
algorithm.

These models cover the typical use-cases
algorithms we find in our company using Stateflow or
Simulink blocks. Added to them we take into account
some other models from Delphi and Renault.

5.2. Use case #1

In the first use case, we need to test an Autosar
model developed with Simulink and dedicated to
management of room, flashing and front/rear lamps.
It is built with around 400 blocks, representing 19
kinds of block types.

This model is used in the prototype developed by
Johnson Controls to evaluate the migration from
legacy architecture to Autosar architecture. This
prototype is built with Simulink model for Autosar, C-
Code generation and plugged on an Autosar ICC3
Basic Software. The whole software is tested into a
standard validation environment at model level, and
used for verification of tools migration for PC
simulation and validation (XCAR), see Figure 7.

ScriptGenerator
tool

ScriptGenerator
tool

Models
scripts

Models tests
report

XCAR
scripts

XCAR tests
report

STB
exported Tests

Automatic C-Code Generation

µC Abstraction LayerMCAL PC

C-Code Generatied

AUTOSAR Runtime Environment

HARDWARE
LINK

SOFTWARE
LINK

Target (RTarget (R--CAR)CAR)
Real EnvironmentReal Environment

PC (EPC (E--CAR)CAR)
Simulated EnvironmentSimulated Environment

Functional
Tests

Figure 7: Johnson Controls Autosar PC and

target validation overview

 Page 5/7

In association with the validation environment,
STB/AGATHA tool, described in Figure 8, provides
some tests and is connected to the Johnson
Controls environment through the file exchange
format.

ScriptGeneratorMatlab/Simulink
scripts

3‐ XLIA
generation

4‐ Test cases
generation

5‐ Test cases
execution

6‐ Test cases
export

2‐ C‐Code
generation

Safety Tests Builder

Simulink Model

AGATHAExcel

Test cases
description

1‐ Coverage
criteria

definition

Figure 8: Test environment at model level

This test environment is divided into 2 parts:

• STB/AGATHA tool: helps user to define
tests coverage criteria, interact with the
model (display test impact, test case
execution) and generates test cases for
Johnson Controls use. AGATHA produces
test cases.

• Johnson Controls modeling test
environment: a tool converts test cases to
Matlab scripts then automatic execution in
standard HMI interface which display
execution and impact in a dedicated project
window (figure 9).

Global validation model environment view

Standard HMI

Automatic script management Dedicated project HMI

Figure 9: Johnson Controls standard HMI and
model validation environment

5.3. Use case #2

In the second use case, we test an algorithm
developed with Simulink blocks for the Tire Pressure
Monitoring System function. In this model we
manage miscellaneous algorithms for tire pressure
state monitoring (low or high pressure thresholds
management, leakage detection, tire pressure
associated to vehicle speed, sensor status
verification) to provide alarm to the vehicle driver.
The last release of this algorithm was used as
specification then hand coded and integrated in
serial ECU production since 2008 (300 000 parts per
year).

This model is built with around 3300 blocks,
representing 24 kinds of block types.

The environment is the same as described for the
use case #1.

The goal of this use case is to check with the tool, a
model developed in the past for serial production
without association to automatic C-Code generation
and to increase the perimeter of the model size
taken into account.

6. Tool evaluation and feedback

From the industrial point of view, the STB/AGATHA
tool in development, is user friendly and can be used
intuitively.

The HMI enables to define easily the coverage
criteria (even with possibility to create specific user
menus for predefined coverage criteria), to generate
the test cases, to view the impact on the model and
to export to pre-defined format (.xls, .pdf, etc). The
user can integrate new functionalities in the tool
(inside the menu) using Matlab scripts (for example
automatic rework of model for data typing, model
check or rework for specific constraints, etc).

 Page 6/7

 Page 7/7

The current results of the evaluation phase, are
promising regarding the potential of the tool to help
in development for time saving, cost reduction and
quality improvement.

The results seen on some example models need to
be confirmed by using this tool on more models.
Nevertheless, the tool needs to continue to be
improved.

7. Conclusion and perspectives

The work which is described in this paper has the
objective to provide an automated test generator,
with a user friendly interface, and whose
performances allow to be used in an industrial
context. This objective must be reached in the year
2010, and the actual results confirm this planning.

A possible extension of the tool is the verification of
properties, because the use of the symbolic
execution is a good way to verify temporal properties
[10].

Another extension can be the use of the symbolic
tree produced by symbolic execution to analyse the
models ([2], [9]), and before generating test to
choose the best test purposes [3].

With these extensions, the proposed toolset could
offer more possibilities to different users and would
allow them to give their feedback to the proposed
verification and validation process.

8. References

[1] L.A. Clarke, “A System to Generate Test Data
and Symbolically Execute Programs”, IEEE
Transaction on Software Engineering, vol.SE-4
n.3, PP.178-187, September 1976.

[2] J-P. Gallois, C. Gaston, A. Lapitre, “AGATHA,
un outil de simulation symbolic”, AFADL 2004,
June 2004, Besançon (France).

[3] C. Gaston, P. Le Gall, N. Rapin, A. Touil,
“Symbolic Execution Techniques for Test
Purpose Definition”, TestCom06, May 16-18,
2006, New York.

[4] Draft International Standard ISO/DIS 26262,
International Organization of Standardization,
2009.

[5] J.C. King, “Symbolic Execution and Program
Testing”, Communication of the ACM, vol.19,
n.7, pp.385, July 1976.

[6] http://gforge.enseeiht.fr/projects/geneauto
[7] J. Printz, CNAM UVGLG206/GLG207, 2006

[8] J. Printz, “Productivité des programmeurs”,
Chapter 1.2.6, Page 41 of the quote, Hermes,
2004.

[9] N. Rapin, C. Gaston, A. Lapitre, J-P. Gallois,
“Behavioral Unfolding of Formal Specifications
Based on Communicating Extended automata”,
ATVA, December 10-13, 2003, Taiwan.

[10] N. Rapin, “Symbolic Execution Based Model
Checking of Open Systems with Unbounded
Variables”, TAP 2009: 137-152.

9. Glossary

AGATHA: Atelier de Génération Automatique de Test
 Holistique d’Automate
Autosar : AUtomotive Open System ARchitecture
ASIL : Automotive Safety Integrity Level
ECU : Electronic Control Unit
MIL : Model In the Loop
SIL : Software In the Loop
ISO : International Standard Organization
MC : Model Coverage
DC : Decision Coverage
EDONA : Environnement de Développement Ouvert aux
 Normes de l’Automobile.
HMI : Human Machine Interface
TPMS : Tire Pressure Monitoring System
PC : Personal Computer
STB : Safety Tests Builder
ICC3 : Implementation Conformance Class 3

http://gforge.enseeiht.fr/projects/geneauto

	1. Introduction
	2. Industrial needs overview
	3. Safety Test Builder
	4. Test generation with AGATHA
	4.1. Symbolic Execution
	4.2. AGATHA workflow
	4.3. Test generation

	5. Use cases description
	5.1. Overview of models perimeter used
	5.2. Use case #1
	5.3. Use case #2

	6. Tool evaluation and feedback
	7. Conclusion and perspectives
	8. References
	9. Glossary

